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Abstract
We develop a numerical model to investigate the localization of surface exciton
polaritons in the presence of random roughness and spatial dispersion. The
localization criteria are examined. The localization effects are embodied in
the large enhancement and rapid decay of the field intensity on the surface.
The calculation shows that there is a transition from the localized state to the
extended state. It has been found that the localization occurs in a limited
frequency range above the resonant frequency of transverse excitons.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In semiconductor systems with reduced dimensionality, the exciton polariton picture is greatly
modified. For example, exciton states in two-dimensional semiconductor systems exhibit the
effect of quantum-mechanical level repulsion [1]. In semiconductor systems of quantum dots,
the exciton polariton properties are affected by the long-range radiative interaction between
quantum dots [2]. It has been shown that pulsed near-field excitation in semiconductor
quantum wells results in the propagation of excitonic wave packets [3]. Recently, there
has been growing interest in studies of surface polaritons with the development of applied
surface science [4–6]. Meanwhile, researchers have studied the localization of the surface
phonon and plasmon polaritons caused by surface roughness [7–9]. Many of the ideas
about the localization of electromagnetic (EM) waves have been suggested by John [10] and
Anderson [11]. In the last two decades, optical experiments on randomly rough surfaces have
observed a variety of qualitative and quantitative changes in phenomena that exist in the absence
of the roughness [12]. Quantitative changes are very significant. A notable example is the
surface-enhanced Raman scattering (by five to six orders of magnitude). Surface polaritons on
randomly rough surfaces were always considered to be in an extended state. Now it has been
realized that weak roughness can cause a major changing of states from extended to localized
states [13, 14].
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The previous theoretical and experimental studies have mainly concentrated on the
localization of surface plasmon polaritons on a rough metallic surface. However, in solid
state spectroscopy most devices are made of semiconductors. Wannier excitons are elementary
excitations of semiconductors. The Wannier exciton is weakly bound by a hole from the
valence band and an electron from the conduction band, with an electron–hole separation
large in comparison with a lattice constant. A photon whose frequency is near an exciton
resonance energy will couple strongly with the excitation of a semiconductor. The exciton–
polariton, a mixed mode of a photon and an exciton, is the true eigenmode of EM wave
propagation in the semiconductor. However, there is a forbidden band between the resonant
frequencies of transverse and longitudinal excitons, in which the real part of the dielectric
function of a semiconductor is negative. Therefore, EM waves with frequencies in the forbidden
band cannot travel in the thick semiconductor. In this case, the EM waves can propagate
as surface exciton polaritons on the semiconductor surface. The surface exciton polaritons
cannot decay into photons radiating away from the surface and also they cannot be excited by
simply shining light onto the flat surface of a single semiconductor, because the conservation of
energy and momentum between incident photons and surface exciton polaritons is not satisfied
simultaneously.

Real semiconductor surface are randomly rough to some degree, so the conservation
of momentum parallel to the surface is invalid. In this case, linear optical excitation of
surface exciton polaritons on a randomly rough surface of a single semiconductor becomes
possible. On the other hand, the surface roughness can cause the localization of surface exciton
polaritons, i.e., they cannot propagate on the surface. To study the localization of surface
exciton polaritons, we require inclusion of spatial dispersion, i.e., the wavevector dependence
of the dielectric function. This dependence leads to particular properties of the localization of
surface exciton polaritons which differ from those of the other surface polariton localization.
The detailed study of the localization of surface exciton polaritons therefore gives information
about the similarities of and the differences between various surface polaritons. In the present
paper, we propose the localization theory of surface exciton polaritons due to the incidence of
a Gaussian beam of laser light. Our aim is to answer the following questions: (i) what are
the localization criteria of surface exciton polaritons? (ii) what are the new localization effects
of surface exciton polaritons? (iii) what is the dependence of the field intensity of surface
exciton polaritons on localization? The answers to the above questions are fundamental to the
observation of localization of surface exciton polaritons.

The remainder of this paper is organized as follows. Section 2 deals with the dispersion
theory of surface exciton polaritons. Section 3 formulates the average EM field intensity outside
a randomly rough surface. The localization theory of surface exciton polaritons is proposed in
section 4. The numerical results on localization are presented in section 5. Section 6 gives our
discussion.

2. Dispersion theory of surface exciton polaritons

For convenience the semiconductor under study is taken to be of cubic symmetry, so that it is
optically isotropic. In the exciton energy region, one must consider the spatial dispersion in the
dielectric response of the semiconductor. In general, the spatial dispersion of the semiconductor
is described by a wavevector-dependent dielectric function ε(k,�). For a one-band model of
Wannier excitons, the dielectric function of the semiconductor is given in the form neglecting
the damping [15],

ε(k,�) = ε∞
(

1 + ω2
L − ω2

T

ω2
T + βk2 −�2

)
, (1)
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where ε∞ is the high-frequency dielectric constant of the semiconductor and ωT and ωL are
the resonant frequencies of the transverse and longitudinal excitons in the semiconductor. The
influence of spatial dispersion is described by β = h̄ωT/m∗, where m∗ is the translational
effective mass of excitons and h̄ is Planck’s constant divided by 2π .

The exciton polariton is a mixed mode of a photon and an exciton, and it is the true
eigenmode of the propagation of EM waves in the semiconductor bulk. For given wavevector
k, there are three branches of exciton polariton waves, of which one is longitudinal (called
mode L) and the other two are transverse. If the longitudinal mode in the bulk has the dielectric
constant εL and the wavevector kL, then it is the solution of the equation εL = ε(kL,�) = 0,
which yields the dispersion relation �2 = ω2

L + βk2
L. The dispersion relation of transverse

exciton polaritons has the form

c2k2

�2
= ε(k,�), (2)

where c is the vacuum velocity of light. For given frequency �, equation (2) is quadratic in k2,
with the solution being

k2
1,2(�) =

{
−c2ω2

T + c2�2 + ε∞β�2 ± [
(c2ω2

T − c2�2 − ε∞β�2)2

− 4c2β(ε∞�4 − ε∞ω2
L�

2)
] 1

2

}
× (2c2β)−1, (3)

where 1 and 2 refer to the plus and minus signs, respectively. Thereby one can define the
dielectric functions

ε1,2(�) = c2k2
1,2(�)

�2
. (4)

On the plane of frequency versus wavevector, the first and second transverse modes are the
lower and upper exciton–polariton branches with dielectric functions ε1 and ε2, respectively.
The coexistence of three bulk modes at a given energy complicates a simple reflection
experiment and its theoretical fit by Fresnel’s equations. The reason is that a transverse
wave incident on a spatially dispersive semiconductor in general excites all three bulk modes
in the semiconductor with certain amplitudes. The two Maxwell’s boundary conditions for
tangential electric and magnetic fields from which Fresnel’s equations are derived do not suffice
to determine the amplitude ratios of the three waves inside the semiconductor. One needs
additional information expressed in the form of the so-called additional boundary condition,
subsequently abbreviated ABC.

Let us consider the boundary between a spatially dispersive semiconductor and the vacuum
with dielectric constant ε0 = 1, which both fill up infinite half spaces. The z-axis is normal
to the semiconductor surface and points to the vacuum. We search for the eigenstates of the
surface of the semiconductor in the exciton energy region. The eigenstates of the surface are
those EM waves, of which one is the transverse mode in the vacuum (called mode 0) obeying
the dispersion relation k0 = �/c and the other three modes belong to the two transverse
exciton–polariton modes and to the longitudinal one inside the semiconductor. All these modes
are matched together at the semiconductor surface by the Maxwell boundary conditions and
the ABCs to form the eigenstates of the surface. We call the quanta of this eigenstate surface
exciton polaritons if the mode 0 is localized at the surface and is travelling nearly parallel to it.
To explore the properties of surface Wannier exciton polaritons we split the wavevectors into
components parallel and perpendicular to the surface. The component n parallel to the surface
is the same for all waves outside and inside the semiconductor because of the phase-matching
condition. The components perpendicular to the surface are then given by k2

j z = k2
j −n2, where

j = 0, 1, 2,L.
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We define the electric field amplitudes E0 of the transverse mode 0 outside the
semiconductor, and the amplitudes E1 and E2 of the transverse modes and EL of the
longitudinal mode inside the semiconductor. The electric fields are all polarized parallel to
the plane of incidence because only this geometry yields surface exciton polaritons. The
conservation of the tangential component of the electric field amplitude may then be written:

E0k0z/k0 = E1k1z/k1 + E2k2z/k2 + ELn/kL. (5)

The magnetic field is already tangential. The conservation of the tangential magnetic field
amplitude yields

E0ε0/k0 = E1ε1/k1 + E2ε2/k2. (6)

Equations (5) and (6) are the two Maxwell boundary conditions of surface exciton polaritons.
They connect the electric field amplitudes of one wave outside and three waves inside the
semiconductor. The explicit behaviour of surface exciton polaritons depends on the ABC
which connects the electric field amplitudes inside the semiconductor. Hopfield and Thomas
proposed a reasonable ABC, which assumes that the excitonic contribution to the macroscopic
polarization should vanish at the surface [15]. The excitonic polarizations are directly
proportional to (ε j − ε∞)E j , where j = 1, 2,L. Splitting the electric field vectors into
components parallel and perpendicular to the surface yields two special equations for surface
exciton polaritons:

E1(ε1 − ε∞)k1z/k1 + E2(ε2 − ε∞)k2z/k2 − ELε∞n/kL = 0, (7)

E1(ε1 − ε∞)n/k1 + E2(ε2 − ε∞)n/k2 + ELε∞kLz/kL = 0. (8)

Equations (5)–(8) form a system of four linear equations for the four unknown electric field
amplitudes E0, E1, E2, and EL. This system has a solution only if the determinant equals
zero:

ε1(ε2 − ε∞)(ε∞k0z − ε0k1z)n2 − ε2(ε1 − ε∞)(ε∞k0z − ε0k2z)n2 + ε∞kLz

× [ε1(ε2 − ε∞)k0zk2z − ε2(ε1 − ε∞)k0zk1z + ε0(ε1 − ε2)k1zk2z] = 0. (9)

Equation (9) is the dispersion relation between the wavevector n and the frequency� of surface
exciton polaritons for the chosen ABC.

The dispersion relation contains in general complex quantities because the wavevectors
kz may have imaginary parts. Thus, surface exciton polaritons must have complex frequency
� even for real wavevector n. The real part of k jz determines the travelling direction of each
mode j , the imaginary part the direction of the spatial decay. To give a physically meaningful
solution of the dispersion relation, the wavevectors k jz have to be chosen as follows [16]:

Re k0z < 0 with Im k0z > 0, Re k1z < 0 with Im k1z > 0,

Re k2z > 0 with Im k2z < 0, Re kLz > 0 with Im kLz < 0.
(10)

Equation (9) has to be solved numerically to obtain the frequency versus wavevector relation
of surface exciton polaritons. The energy of Wannier excitons is given by a hydrogen-like
energy series with main quantum number n. We made a numerical evaluation for the Cn=1

exciton in ZnO neglecting the anisotropy of this crystal. The parameters concerned [17] are as
follows: h̄ωT = 3.4215 eV, h̄ωL = 3.4323 eV, ε∞ = 6.16, and m∗ = 0.87me, where me is the
electron mass. Figure 1 shows the variation of the real part of the complex frequency � with
real wavevector n. As shown, Re� = ωT at n = ωT/c, Re� is a monotonically increasing
function of n, and Re� exceeds ωL at large wavevectors. Figure 2 shows the variation of
the imaginary part of complex frequency � with real wavevector n. The appearance of an
imaginary part is a signature that surface exciton polaritons have a decay rate due to the spatial
dispersion, which is denoted by �s = −Im�.
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Figure 1. The dispersion relation for surface exciton polaritons (SEPs) is plotted for the real wave
vector n parallel to the surface and the real part of complex frequency�. ωT and ωL are the resonant
frequencies of transverse and longitudinal excitons.
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Figure 2. The dispersion relation for surface exciton polaritons is plotted for the real wavevector n
parallel to the surface and the imaginary part of complex frequency�.

3. Average field intensity outside the surface

As is known, a semiconductor can support three exciton polariton modes, of which two are
transverse and one is longitudinal. We need to know which mode leads to the surface exciton
polariton. In the case � > ωL, k1,2 and kL are all real, such that the three modes may
propagate in the same direction of the semiconductor. For incident frequencies � below ωL, k1

is real but k2 and kL are purely imaginary, such that the first transverse mode is a propagating
mode while the second transverse and longitudinal modes are spatially damped. Further, the
dielectric function of the longitudinal mode is identically equal to zero. Inasmuch as the surface
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exciton polariton is spatially damped outside and inside the semiconductor, we conclude that
the second transverse mode makes the main contribution to the surface exciton polariton. In
the following the dielectric response of the semiconductor to the incident EM field is described
by the dielectric function ε2(�) of the second transverse mode.

The system under study consists of a semi-infinite semiconductor and vacuum. The
semiconductor surface is randomly rough and the ensemble average of the rough surface defines
a plane surface z = 0. If x = (x, y) is the position vector of any point on the plane surface, ζ(x)
gives the height of roughness with respect to the plane surface. Note that the three-dimensional
position vector r is now given by r = x + zẑ. Thus, the local dielectric function of the system
can be written as follows:

ε(r,�) = ε0(z,�)+ [ε2(�)− 1]{�[ζ(x)− z] −�(−z)},
ε0(z,�) = ε2(�)�(−z)+�(z),

(11)

where �(z) is Heaviside’s unit step function and ε0(z,�) is the local dielectric function for a
plane semiconductor surface. Apparently the dielectric function ε(r,�) is a random variable
near the rough surface.

ε2(�) given by equation (4) is negative for ωT < � < ωL. Let a monochromatic EM
beam be incident on a surface area centred at the origin r = 0. The incident frequency � is
in a frequency range larger than ωT, so that the EM field cannot propagate in the bulk of the
semiconductor. However, the incident field can excite the surface exciton polaritons near the
rough surface. The macroscopic electric field E(r,�) of surface exciton polaritons satisfies the
linear Maxwell equation

−∇ × ∇ × E(r,�)+ ε(r,�)(�/c)2E(r,�) = 0, (12)

which cannot be solved exactly. We need to introduce the dyadic retarded Green function
d̂(r, r′,�) of surface exciton polaritons, which obeys the equation

−∇ × ∇ × d̂(r, r′,�)+ ε(r,�)(�/c)2d̂(r, r′,�) = δ(r − r′)I. (13)

With the use of this function, the electric field E(r,�) can be expressed as follows:

E(r,�) =
∑
λ

∫
dk
(2π)3

[(�/c)2 − k2]E0(k, λ;�)e(k, λ) ·
∫

dr′ eik·r′
d̂(r′, r,�), (14)

E0(k, λ;�) =
∫

dr e−ik·re∗(k, λ) · E0(r,�), (15)

where λ = s, p characterize two polarization directions, e(k, λ) is the polarization unit vector
of the plane wave, and E0(r,�) denotes the incident electric field in the infinite vacuum.
The derivation of equation (14) is given in reference [18]. d̂(r′, r,�) possesses the poles
corresponding to surface exciton polaritons when z ′ < 0 and z > 0.

The surface polaritons exist only for the so-called transverse-magnetic wave, namely
p-polarized surface polaritons. On the rough surface, however, the incident photons of
s polarization can also excite the surface polaritons. The roughness coupling between the
surface polaritons and the s photons is very small in the visible region and can thus be
neglected [13]. In this case, we assume that the incident field is a p-polarized fundamental
Gaussian beam emitted by a laser. If the distance between the laser and the origin is much
greater than the distance |r · k̂0|, the incident field at the position r is of the form

E0(r,�) = E0(0,�)e(k0, p) exp(ik0 · r − |r × k̂0|2/R2), (16)

where the wavevector k0 gives the incident direction and satisfies the relation� = ck0. R is the
beam spot size at the origin and E0(0,�) is the incident field amplitude at the origin. Further,
we suppose that equation (16) holds in the whole real space. This means that diffraction effects
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of the Gaussian beam are neglected. Now we introduce the Fourier transform d̂(n,n′,�|0−0+)
of the Green function d̂(r′, r,�) on the surface with respect to x′ and x. Consequently, the
electric field E(r,�) outside the surface excited by the Gaussian beam can be expressed as
follows:

E(r,�) =
∫

dn
(2π)2

∫
dn′

(2π)2
A(n,�)ein′·x−k2(n′)ze(n, p) · d̂(n,n′,�|0−0+), (17)

A(n,�) = −E0(0,�)πR2e−R2(n−k0 sin θ)2/4 cos2 θ k0(n − k0 sin θ)2

|n − k0|[i(n sin θ − k0)+ k1(n) cos θ ] , (18)

k1(n) = [n2 − ε2(�)�
2/c2]1/2, k2(n) = (n2 −�2/c2)1/2. (19)

e(n, p) = n cos θ

|n − k0| ẑ − n sin θ − k0

|n − k0| n̂,

where θ is the incident angle. A(n,�) and e(n, p) can be regarded as the wave amplitude and
polarization vector of surface exciton polaritons. The derivation of equation (17) is given in [7].

In optical experiments, what we can detect directly is the average EM field intensity of
surface exciton polaritons outside the surface. Theoretically, the average field intensity is
determined by the field correlation function, which is defined as

〈E j (r,�+ ω)E∗
l (r

′,�)〉 =
∫

dq
(2π)2

∫
dn
(2π)2

∫
dn′

(2π)2

∫
dn′′

(2π)2
A(n+,�+ ω)A∗(n−,�)

× ein′+·x−k2(n′+)z−in′′−·x′−k∗
2 (n

′′−)z′ ∑
i,k

ei(n+, p)e∗
k (n

−, p)

× 〈d̂i j(n+,n′+;�+ ω|0−0+)d̂∗
kl(n

−,n′′−;�|0−0+)〉, (20)

where n± = n ± q/2 and for convenience q is supposed to vary only near the origin q = 0.
The brackets 〈· · ·〉 indicate an ensemble average over all possible configurations of the rough
surface. Equation (20) shows that the field correlation function is connected with the average
two-particle Green function in momentum space. In the limit ω → 0 and in the case r = r′,
j = l, the field correlation function gives the average field intensity 〈|E(r,�)|2〉 outside the
surface.

4. Localization theory of surface exciton polaritons

Our goal is to prove the localization of surface exciton polaritons in the sense that the diffusion
coefficient of the EM energy vanishes. Therefore, the study of localization involves the
evaluation of the average one- and two-particle Green functions in momentum space. We will
proceed within the framework of multiple-scattering theory. At first, we notice that the average
one-particle Green function in momentum space has the diagonal form

〈d̂(n,n′,�|0−0+)〉 = (2π)2δ(n − n′)d(n,�|0−0+). (21)

Next, we suppose that the surface configurations satisfy a Gaussian distribution. This
means that the configuration function ζ(x) has the ensemble average value 〈ζ(x)ζ(x′)〉 =
δ2e−(x−x′)2/a2

, where δ is the root-mean-square roughness amplitude and a is the transverse
correlation length. In the following we concentrate on the small roughness case. The
assumption of small roughness means that the root-mean-square δ shall be much smaller than
the wavelength λ of the incident light: δ � λ.

Under the assumption of small roughness, within the framework of the average T -matrix
approximation, the diagonal average one-particle Green function meets the Dyson equation [7]

d(n,�|0−0+) = d0(n,�|0−0+)+ d0(n,�|0−0+) ·Σ(n,�|0−0+) · d(n,�|0−0+). (22)
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d0(n,�|0−0+) is the unperturbed Green function in momentum space and Σ(n,�|0−0+) is
the self-energy function in momentum space given by

Σ(n,�|0−0+) = w2(�)δ2
∫

dn′

(2π)2
g(n′ − n)d0(n′,�|0−0+), (23)

where w(�) = [1 − ε2(�)](�/c)2 and g(n) = πa2 exp(−a2n2/4). Once d0(n,�|0−0+)
is known, d(n,�|0−0+) can be evaluated from equations (22) and (23). Reference [19]
outlines the derivation of the unperturbed Green function d0. The unperturbed Green function
in momentum space can be written as follows:

d0(n,�|0−0+) = d0(n,�)e−(n,�)e+(n,�), (24)

d0(n,�) = −c2n2

�2

1

k1(n)+ k2(n)ε2(�)
, (25)

e−(n,�) = ẑ + i
k1(n)

n
n̂, e+(n,�) = ẑ + i

k2(n)
n

n̂. (26)

Here k1(n) and k2(n) are given by equation (19). If ωT < � < ωL and n > �/c, k1(n)
and k2(n) are real and positive, and so d0(n,�) represents the unperturbed Green function of
surface exciton polaritons. Inasmuch as the dielectric function ε2(�) given by equation (4) is
negative, the dispersion relation of surface exciton polaritons can be determined by the equation
of poles of the unperturbed Green function d0(n,�). Using equation (19) for k1(n) and k2(n),
from equation (25) one can rewrite the unperturbed Green function of surface exciton polaritons
into the standard form:

d0(n,�) = α(n,�)

�−�(n)+ i�s
, (27)

α(n,�) = c4n2[k1(n)− k2(n)ε2(�)]
�2ε2(�)[1 − ε2(�)][�+�(n)] , (28)

where �(n) is the real part of the complex frequency of surface exciton polaritons determined
by equation (9).

Likewise, the average one-particle Green function in momentum space can be written as

d(n,�|0−0+) = d(n,�)e−(n,�)e+(n,�). (29)

Putting equations (24) and (29) into equation (22), we obtain the Dyson equation for d(n,�):

d(n,�) = d0(n,�)+ d0(n,�)t (n,�)d(n,�), (30)

t (n,�) = e+(n,�) ·Σ(n,�|0−0+) · e−(n,�). (31)

In the small roughness case, the energy change of surface exciton polaritons due to disorder
can be omitted, so the dispersion relation � = �(n) holds. We keep only the imaginary part
γ of the self-energy. The average one-particle Green function of surface exciton polaritons is
calculated from equations (27) and (30) as

d(n,�) = α(n,�)

�−�(n)+ i(γ + �s)
, (32)

where γ = −α(ns,�) Imt (ns,�) and n = ns(�) is the solution of the dispersion relation (9)
of surface exciton polaritons. The physical meaning of γ can be seen if we let γ = γel + γrad.
γel is the elastic scattering rate from the state ns(�) into other states n′

s(�), and γrad represents
the radiative rate from the surface polariton state into p-photon modes of n < �/c.

γel and γrad can be found by the technique recounted in [7]. After lengthy calculation, we
have obtained the concrete expression of γel:

γel = (�/c)4{π[1 − ε2(�)]δaα(ns,�)}2 N(�) f (�) exp(−a2n2
s/2), (33)

f (�) = [1 + k2
1(ns)k

2
2(ns)/2n4

s ]I0(a
2n2

s/2)− 2k1(ns)k2(ns)I1(a
2n2

s/2)/n2
s

+ k2
1(ns)k

2
2(ns)I2(a

2n2
s/2)/2n4

s ,
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Figure 3. Variation of the velocity of surface exciton polaritons with wavevector n.

where In(z) is the modified Bessel function of the first kind of order n. N(�) = ns(�)/

2πv(ns) is the surface polariton density of states near frequency � and v(n) = d�(n)/dn
is the velocity of surface exciton polaritons. With the approximation v(n) = ��(n)/�n,
the numerical values of the velocity can be easily derived from figure 1. Figure 3 shows the
variation of the velocity v with wavevector n. First v decreases rapidly with increasing n and
then it increases gently with n. Likewise, γrad has been obtained as follows:

γrad = − 1
2 {(�/c)[1 − ε2(�)]δa}2α(ns,�)u(�) exp(−a2n2

s/4), (34)

u(�) =
∫ �/c

0
dn′ exp(−a2n′2/4)

n′3k3(n′)h(n′,�)
k2

1(n
′)+ k2

3(n
′)ε2

2 (�)
,

h(n,�) = [k1(ns)k2(ns)k
2
1(n)/2n2

s n2 − ε2(�)]I0(a
2nsn/2)

+ [k2(ns)ε2(�)− k1(ns)]k1(n)I1(a
2nsn/2)/nsn

+ k1(ns)k2(ns)k
2
1(n)I2(a

2nsn/2)/2n2
s n2,

where k3(n) = (�2/c2 − n2)1/2. The numerical calculation shows that γrad is much smaller
than γel. Therefore, in the following discussion, we consider only d(n,�) of n > �/c.

Similar to the average one-particle Green function, the average two-particle Green function
in momentum space has the general form

〈d̂i j(n+,n′+;�+ ω|0−0+)d̂∗
kl(n

−,n′′−;�|0−0+)〉 = (2π)2δ(n′ − n′′)e−
i (n

+,�+ ω)e+
j

× (n′+,�+ ω)e−∗
k (n−,�)e+∗

l (n′−,�)T (n,n′;�,q, ω), (35)

where n± = n±q/2 and T satisfies a scalar Bethe–Salpeter equation. We introduce the density
relaxation function of surface exciton polaritons by

T (�,q, ω) =
∫

dn
(2π)2

∫
dn′

(2π)2
T (n,n′;�,q, ω). (36)

With the mathematical technique developed by Vollhardt and Wölfle [20], it follows that the
density relaxation function meets the diffusion equation (q → 0, ω → 0):

T (�,q, ω) = 2π iα2(ns,�)N(�)

ω + iD(q, ω)q2
. (37)
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In the preceding discussion, we neglect inelastic scattering effects due to radiation of surface
exciton polaritons, dissipation of excitons, and spatial dispersion of excitons. γrad represents the
radiative effect. Excitonic dissipation originates from exciton radiation and phonon scattering.
In the empirical theory, one describes the excitonic dissipative effect by replacing �2 with
�(� + i�) in the dielectric function given by equation (1), where � is called the exciton
damping constant. �s signifies the spatial dispersion effect. Therefore, the inelastic scattering
rate of surface exciton polaritons is γinel = γrad + � + �s. In equation (37) we can include the
inelastic scattering effects via the replacement ω → ω + iγinel. D(q, ω) is the renormalized
diffusion coefficient and is given by

D(q, ω) = D0

[
1 − 1

πns(�)lel

∫ nc

0
dn

2n

n2 − i(ω + iγinel)/D(q, ω)

]
, (38)

where D0 = v2(ns)/4γel is the bare diffusion coefficient. We have introduced an upper cutoff
nc = √

(lellinel)−1 − ξ−2 into the integration, where

lel = v(ns)/2γel and linel = v(ns)/2γinel (39)

are the elastic and inelastic mean free path of surface exciton polaritons, respectively, and ξ is
a characteristic length.

Anderson pointed out that the envelope of the wavefunction of a localized electron decays
exponentially from some point in space, |ψ(r)| ∼ exp(−|r − r0|/ξ), where ξ is called the
localization length of electron. The Anderson localization means that in the limit ω → 0,
D(q, ω) → 0. Thereby we define the characteristic length ξ = limω→0(iD/ω)1/2. We
shall show that the intensity of localized surface exciton polaritons behaves as 〈|E(x,�)|2〉 ∼
exp(−|x|/ξ), so that ξ is the localization length of surface exciton polaritons. As a result of
equation (38), the localization length is given by

ξ 2 = lellinel exp[πns(�)lel]
2 − exp[πns(�)lel] . (40)

ξ is real and positive only if the denominator on the right-handed side of equation (40) is
positive. Equation (40) always supports the solution of a positive real ξ in the frequency
range of interest. ξ ∝ exp[ 1

2πns(�)lel] is found from the last equation. We require that
the localization length ξ is larger than the elastic mean free path lel and the elastic mean
free path lel cannot be much shorter than the transverse correlation length a. Inasmuch as the
inelastic scattering effects always tend to destroy the elastic scattering effects, the localization is
meaningful only if lel � linel. Consequently, the criteria for the localization of surface exciton
polaritons are that ξ > lel, lel � linel, and lel/a > 0.1. On the other hand, elastic scattering from
the rough surface is ineffective if lel/a � 0.1, such that the surface polaritons are in extended
states. In this case, in the limit ω → 0 the renormalized diffusion coefficient is given by

D(q, 0) = D0

[
1 − 1

πns(�)lel

∫ nc

0
dn

2n

n2 + (lellinel)−1

]
, (41)

where we have introduced an upper cutoff nc = 1/ linel into the integration. After the integration
is carried out, the renormalized diffusion coefficient is D(q, 0) = D0(1 − η/ lel) with the
delocalization length

η = ln(1 + lel/ linel)

πns(�)
. (42)

The delocalization length η must be smaller than the elastic mean free path lel.
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From equation (20) we show that for the Gaussian incident beam, the field correlation
function outside the surface is completely determined by the density relaxation function defined
in equation (36), i.e.,

〈E(r,�+ ω) · E∗(r,�)〉 ∝ e−2k2(ns)z
∫

dq

(2π)2
eiq·xT (�,q, ω). (43)

This means that the Gaussian incident beam can produce the localization of surface polaritons.
We have found T (�,q, ω) as given by equation (37) with the replacement ω → ω + iγinel.
Equations (37) and (43) are obtained for small q and ω. If equation (37) is put into
equation (43), the integral variable q can resume varying on the whole wavevector plane
because the main contribution to the q integration comes from the small q region. When the
q integration is carried out in the limit ω → 0, equation (43) can be written as 〈|E(r,�)|2〉 =
|E0(0,�)|2ρ(r,�). Here |E0(0,�)|2 is the incident field intensity at the origin. ρ(r,�)
denotes the enhancement of the field intensity outside the surface and is given by

ρ(r,�) = ρ0(�)e
−2k2(ns)z K0(|x|/ l) for |x| > lel, (44)

where K0(x) is the modified Bessel function of the second kind of order zero and

ρ0(�) = α2(ns,�)N(�)[1 + k2
2(ns)/n2

s (�)]
|A(ns,�)|2
|E0(0,�)|2

× n4
s (�) cos2 θ + k2

1(ns)[ns(�) sin θ − k0]2

D0n2
s (�)|ns(�)− k0|2 . (45)

l represents the decaying length of the field in the xy plane and is given by

l =


(lellinel)

1/2 in extended states,

ξ

(
lellinel

ξ 2 + lellinel

)1/2

in localized states.
(46)

The decaying length in extended states is always larger than that in localized states.

5. Numerical results

To make the numerical calculation, we select a single crystal of ZnO as the semi-infinite
semiconductor. One of the reasons for this selection is that the exciton-free surface layer of ZnO
is less than about 30 Å, probably the smallest one of the II–VI semiconducting compounds.
Another reason is that ZnO semiconductors were used for the first observation of surface
exciton polaritons. ZnO has the wurtzite structure. Therefore, two exciton transition series are
polarized perpendicular to the hexagonal c-axis (A and B excitons) and one polarized parallel
to the c-axis (C excitons). The differently polarized transitions with main quantum number
n = 1 are separated by about 40 meV. We suppose that the influence of the An=1 and Bn=1

excitons in the energy range of the differently polarized Cn=1 exciton is not too important and
hence can be omitted. Thus, we assume an isotropic medium. In section 2, we give most
of the known data of the Cn=1 exciton of ZnO. For the following calculations one still needs
the exciton damping constant, which is � = 0.5 meV [17]. Since the surface roughness of
the ZnO semiconductor can be controlled at will, the transverse correlation length a is chosen
equal to 47.68 nm. In a frequency range near ωL, the wavelength λ of the incident light has an
order of magnitude of 362 nm. For the root-mean-square roughness amplitude we use the value
δ = 47 nm, so that the small roughness condition δ � λ is met. The beam spot size of the
incident light at the origin is required to be less than the light wavelength, so that we choose a
very small value R = 0.197 µm. The reason for the requirement is that if the beam spot size R
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Figure 4. Frequency dependence of the elastic mean free path lel , localization length ξ , and
delocalization length η in units of the transverse correlation length a.

is larger than the light wavelength λ, interference effects are inessential on the rough surface,
whereas the localization is just due to strong interference effects.

We first examine the characteristics of the localization of surface exciton polaritons. The
numerical analysis will use equations (39), (40), and (42). The parameters lel, ξ , η, and lel/ linel

are calculated in a frequency range ωT � � � ωL for δ = 47 nm, and the numerical results are
depicted, respectively, in figures 4 and 5. As shown, for a fixed δ = 47 nm, there is a mobility
edge�∗ = 3.4288 eV, which is determined by the condition lel/a = 0.1. In the frequency range
between ωT and �∗, lel/a > 0.1 and ξ > lel, while in the frequency range between �∗ and ωL,
lel/a < 0.1 and η < lel. Further, lel � linel in the whole frequency range. Consequently, the
localization appears in a limited frequency range above ωT. The localization length ξ describes
the degree of localization; the smaller ξ is, the larger the degree of localization is. In the
limit � → ωT, the exciton–polariton is called a resonantly excited exciton. Almost resonantly
excited excitons are real quasiparticles that can be trapped and localized by surface roughness.
Resonantly excited excitons in a single GaAs quantum well reveal an enhanced radiative
recombination in comparison with the three-dimensional excitons [21]. It has been found that
such a radiative decay is much slowed by localization [22]. We expect that resonantly excited
excitons on a rough surface will show a much slower radiative decay, due to localization. When
� approaches ωL, the exciton–polariton is still exciton-like. We notice that lel ∝ [ε2(�)]2. In
the limit � → ωL, since the dielectric function ε2(�) approaches zero, the rapid decrease of
lel/a inhibits the localization of surface exciton polaritons.

Next we must analyse the enhancement of the field intensity outside the surface. The
limiting form of K0(x) at x � 1 is K0(x) → (π/2x)1/2e−x . This shows that the field of
surface exciton polaritons is confined within a radius from the z-axis. The confined behaviour
of the field on the surface is due to multiple scattering effects. The limiting form of K0(x) at
x � 1 is K0(x) → − ln(x/2)− 0.5772. In mathematics the field intensity seems to be infinite
at the origin, but in physics the field intensity is finite at the origin. Inasmuch as equation (43)
is derived under the diffusion assumption, it is true only at the propagation distance |x| > lel.
For |x| < lel, the propagation is basically wavelike and hence equation (43) is ineffective. The
calculation reveals that lel < 11.23 µm for ωT � � � ωL. In the frequency range between
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Figure 5. Frequency dependence of the ratio lel/ linel of the elastic to the inelastic mean free path,
for δ = 47 nm.

ωT and ωL, the field intensity in the small area of |x| � lel can be approximated as a constant.
Since the field intensity is continuous across |x| = lel, we write

ρ(r,�) = ρ0(�)e
−2k2(ns)z K0(lel/ l) for |x| � lel. (47)

The peak of the variation of the enhancement ρ(r,�)with r appears in the wave region |x| � lel

on the surface z = 0+. Therefore the enhancement peak is given by

ρp = ρ0(�)K0(lel/ l), (48)

where lel represents the peak radius of surface exciton polaritons and ρ0(�) is given by
equation (45). The enhancement peak ρp depends on the frequency �, roughness amplitude
δ, and incident angle θ .

The following numerical analysis will use equation (48). Figure 6 shows the variation of
ρp with � at δ = 47 nm and θ = 8.1◦. For a fixed δ, ρp decreases first with increasing �,
comes to a minimum around 3.422 eV, then increases with increasing �, reaches a maximum
around 3.4306 eV, and finally decreases steeply. In the localized region where ωT � � < �∗,
ρp is always larger than unity, i.e., the field intensity of surface exciton polaritons is enhanced
relative to the incident intensity. The enhancement mechanism here is as follows. As the
surface exciton polaritons in localized states cannot propagate on the surface, the energy of
the incident light must accumulate on the surface, which produces the following two results.
(1) The peak radius of surface exciton polaritons can be larger than the beam spot size of the
incident light and (2) the field intensity of surface exciton polaritons is larger than the incident
intensity. In the extended region where �∗ � � � ωL, ρp can be much larger than unity,
i.e., the field intensity of surface exciton polaritons can be greatly enhanced relative to the
incident intensity. The maximum enhancement here is of the order of 1012. In contrast the
maximum enhancement of surface phonon (plasmon) polaritons is just of the order of 102. The
enhancement mechanism here is that the peak radius lel of surface exciton polaritons is far
smaller than the beam spot size R of the incident light. The energy conservation requires that
the field intensity of surface exciton polaritons be extremely larger than the incident intensity.
It is interesting to notice that the field intensity of surface exciton polaritons is practically equal
to zero when lel/R = 1.39 × 10−7.
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Figure 6. Frequency dependence of the enhancement peak ρp in the field intensity at δ = 47 nm
and θ = 8.1◦.
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The following numerical analysis will use equations (44) and (47). In figure 7, we show
the distribution of the enhancement ρ(r,�) in the x–z plane for � = 3.4234 eV, δ = 47 nm,
and θ = 8.1◦. These parameters correspond to a localized state, in which l = 3.9228 µm,
lel = 0.4439 µm, [2k2(ns)]−1 = 77.3947 nm, and ρ0(�) = 2.5518 × 103. Figure 7 reveals
that the enhancement peak ρp is about twice as large as ρ0(�), because of l � lel. Further,
the decay of the field intensity on the surface is much smaller than that away from the surface,
because of l � [2k2(ns)]−1. The field intensity is, therefore, confined in the surface area of a
small radius lel centred at the incident point, with a large enhancement. This is similar to the
field intensity of surface phonon (plasmon) polaritons in localized states.

6. Discussion

Now it is time for us to address the relations and differences between results produced by
the incident Gaussian beam and plane wave. As we have seen, the electric field of the
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Figure 8. Frequency dependence of the enhancement peak ρp in the field intensity of plane waves.
All the parameters and illustrations are the same as in figure 6.

incident Gaussian beam and the excited electric field outside the semiconductor surface are
given by equations (16) and (17), respectively. Provided that the light source emitting a plane
wave possesses a circular aperture stop of radius R and the wave’s diffraction effects can be
neglected, the electric field of the incident plane wave reads

E0(r,�) = E0(0,�)e(k0, p)S(r) exp(ik0 · r), (49)

where S(r) = 1 if |r × k̂0| � R or zero otherwise. The electric field excited by the incident
plane wave is still given by equation (17) but the function A(n,�) has the following form:

A(n,�) = −E0(0,�)πR2 k0(n − k0 sin θ)2

|n − k0|[i(n sin θ − k0)+ k1(n) cos θ ] . (50)

In comparison with equation (18), equation (50) lacks a decaying exponential factor. If we
continue to discuss the scattering properties of plane waves, then all the physical quantities have
the same expressions as those of Gaussian beams. Therefore, the theoretical framework of the
scattering of Gaussian beams admits the scattering of plane waves. The localization behaviour
of plane waves is identical to that of Gaussian beams. For example, figures 4 and 5 completely
apply to plane waves in quality and quantity. However, the dependence of the field intensity
of plane waves on the radius R, the incident angle θ , and the frequency � is different from
that of Gaussian beams. Both are identical only if R2(ns − k0 sin θ)2 � 2 cos2 θ . Under the
same conditions as figure 6 and using equation (48), figure 8 shows the frequency dependence
of the enhancement peak ρp in the field intensity of plane waves. Quantitative changes in the
field intensity of plane waves are tremendous compared with that of Gaussian beams. The
enhancement peak ρp first decreases and then increases on increasing of the frequency �. The
substitution of plane waves for Gaussian beams can decrease the intensity enhancement by the
order of 10.

In three-dimensional disordered systems without confinement, diffraction effects of light
will conceal the localization effects, so that the localization effects are hard to observe.
However, surface exciton polaritons are confined to a two-dimensional system and the
localization condition can be easily satisfied in realistic experimental situations. The
localization effects are embodied in the large enhancement and fast decay of the field intensity
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on the surface and they will be observed in surface optical experiments. The real part of the
complex frequency of surface exciton polaritons has an order of magnitude of 3 eV, while its
imaginary part has an order of magnitude of −1 meV. The numerical calculation shows that
the imaginary part of the complex frequency of surface exciton polaritons does not prevent the
observation of localization of surface exciton polaritons. The beam spot size of incident laser
light has a typical value R = 0.197 µm, which is smaller than the light wavelength. Current
laser technology is certain to produce such a beam of laser light.

The present paper develops a numerical model to investigate the localization of surface
exciton polaritons in the presence of random roughness and spatial dispersion. It is found
that the localization occurs in a limited frequency range above the resonant frequency ωT

of transverse excitons. Given �∗ is the mobility edge, as a universal law, the localization
dominates the spectrum range ωT � � � �∗. In localized states the field intensity of surface
exciton polaritons is enhanced greatly and is much higher than that of surface phonon (plasmon)
polaritons. The localization of surface exciton polaritons is due to the destructive interference
between waves scattered from the rough surface. In conclusion, we establish the localization
theory of Gaussian laser beams and plane light waves on a rough semiconductor surface.
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